Skip to main content

Predictions are only as good as the regularity of the event

Weather prediction is data. This makes weather data-related stories and examples highly relatable.

The Washington Post published an interactive article that shows how accurate weather predictions are for a given city in the United States. This means that we, stats instructors, can use this page to provide a geographically personalized lesson on weather prediction, the limitations of data, and why predictions about the future are only as good as the consistency of the past.

I also like this example because it isn't terribly mathy and encourages statistical literacy. 

Kommenda and Stevens, writing for the Washington Post, recently shared a story on the accuracy of weather predictions based on time away from the target day. Here, the DV is prediction accuracy, operationalized using the difference between predicted and actual high temperature. You could always ask your students how they would operationalize weather...or maybe some weather matters more than others? Folks in Erie, PA, aren't as concerned about temperature differences as we are about inches of snow or the severity of windstorms created by Lake Erie. 

The article includes reasons for these patterns, which can get you and your students talking about causality:


In addition to the examples above, I think there is a faint pattern in the East that shows that the Appalacian Mountains may goof with either predictions? That tracks with my lived experiences, growing up outside of Altoona, PA.


ANYWAY.

Another fun feature is that you can look up your town (well, I guess this is only fun if you live in America). But, it is NOAA data, so US data. ANYWAY: My intuition was backed up: Erie, PA doesn't have the best predictive powers. Especially in the winter. My understanding is that this is due to Lake Erie.



As statistical tools get better, and data collection occurs on an ever bigger scale using more devices, overall predictions are getting better:


This graph illustrates that statistics is not static; it is always changing, and it has a practical effect on the lives of all people as weather predictions become more accurate.




Comments

Popular posts from this blog

Ways to use funny meme scales in your stats classes

Have you ever heard of the theory that there are multiple people worldwide thinking about the same novel thing at the same time? It is the multiple discovery hypothesis of invention . Like, multiple great minds around the world were working on calculus at the same time. Well, I think a bunch of super-duper psychology professors were all thinking about scale memes and pedagogy at the same time. Clearly, this is just as impressive as calculus. Who were some of these great minds? 1) Dr.  Molly Metz maintains a curated list of hilarious "How you doing?" scales.  2) Dr. Esther Lindenström posted about using these scales as student check-ins. 3) I was working on a blog post about using such scales to teach the basics of variables.  So, I decided to create a post about three ways to use these scales in your stats classes:  1) Teaching the basics of variables. 2) Nominal vs. ordinal scales.  3) Daily check-in with your students.  1. Teach your students the basics...

Leo DiCaprio Romantic Age Gap Data: UPDATE

Does anyone else teach correlation and regression together at the end of the semester? Here is a treat for you: Updated data on Leonardo DiCaprio, his age, and his romantic partner's age when they started dating. A few years ago, there was a dust-up when a clever Redditor r/TrustLittleBrother realized that DiCaprio had never dated anyone over 25. I blogged about this when it happened. But the old data was from 2022. Inspired by this sleuthing,  I created a wee data set, including up-to-date information on his current relationship with Vittoria Ceretti, so your students can suss out the patterns that exist in this data.

If your students get the joke, they get statistics.

Gleaned from multiple sources (FB, Pinterest, Twitter, none of these belong to me, etc.). Remember, if your students can explain why a stats funny is funny, they are demonstrating statistical knowledge. I like to ask students to explain the humor in such examples for extra credit points (see below for an example from my FA14 final exam). Using xkcd.com for bonus points/assessing if students understand that correlation =/= causation What are the numerical thresholds for probability?  How does this refer to alpha? What type of error is being described, Type I or Type II? What measure of central tendency is being described? Dilbert: http://search.dilbert.com/comic/Kill%20Anyone Sampling, CLT http://foulmouthedbaker.com/2013/10/03/graphs-belong-on-cakes/ Because control vs. sample, standard deviations, normal curves. Also,"skewed" pun. If you go to the original website , the story behind this cakes has to do w...