Skip to main content

Posts

Showing posts with the label rpsychologist

Teaching the "new statistics": A call for materials (and sharing said materials!)

This blog is usually dedicated to sharing ideas for teaching statistics. And I will share some ideas for teaching. But I'm also asking you to share YOUR ideas for teaching statistics. Specifically, your ideas for teaching the new statistics: effect size, confidence intervals, etc. The following email recently came across the Society for the Teaching of Psychology listserv from Robert Calin-Jageman (rcalinjageman@dom.edu). "Is anyone out there incorporating the "New Statistics" (estimation, confidence intervals, meta-analysis) into their stats/methods sequence? I'm working with Geoff Cumming on putting together an APS 2017 symposium proposal on teaching the New Statistics.  We'd love to hear back from anyone who has already started or is about to.  Specifically, we'd love to:         * Collect resources you'd be willing to share (syllabi, assignments, etc.)         * Collect narratives of your experi...

Kristoffer Magnusson's "Interpreting Confidence Intervals"

I have shared Kristoffer Magnusson's fantastic visualizations of statistical concepts here previously ( correlation , Cohen's d ). Here is another one that helps to explain confidence intervals , and how the likelihood of an interval containing true mu varies based on interval size as well as the size of the underlying sample. The site is interactive in two ways. 1) The sliding bar at the top of the page allows you to adjust the size of the confidence interval, which you can read in the portion of the page labeled "CI coverage %" or directly above the CI ticker. See below. 2) You can also change the n-size for the samples the simulation is pulling. The site also reports back the number of samples that include mu and the number of samples that miss mu (wee little example for Type I/Type II error). How to use it in class: Students will see how intervals increase and decrease in size as you reset the CI percentage. As the sample size increases, the range ...

Kristopher Magnusson's "Interpreting Cohen's d effect size"

Kristopher Magnusson (previously featured on this blog for his interactive illustration of correlation ) also has a helpful illustration of effect size . While this example probably has some information that goes beyond an introductory understanding of effect size (via Cohen's d ) I think this still does a great job of illustrating how effect size measures, essentially, the magnitude of the difference between groups (not how improbably those differences are). See below for a screen shot of the tool. http://rpsychologist.com/d3/cohend/, created by Kristopher Magnusson