The Economist created interactive visualizations for various polling data related to the 2020 U.S. Presidential election. While illustrating this data, they used different measures of central tendency and different confidence intervals. Like, it is one thing to say that Candidate A is polling at 47% with a margin of error of 3.2%. I think it is much more useful to illustrate what the CI is telling us about the likely true parameter, based on what we have collected from our imperfect sample. The overlap in confidence intervals when polling is essential to understanding polling. How to use in class: 1) Electoral college predictions, illustrated with median, 60%, and 95% confidence intervals. Also, I like how this illustrates the trade-off between precision and the size of a confidence interval. The 60% CI is more narrow, but you are only 60% confident that it contains the true number of electoral college votes. Meanwhile, the 95% confidence interval is much wide but also more ...