Skip to main content

Dvorsky's "Lab Mice Are Freezing Their Asses Off—and That’s Screwing Up Science"

This example can be used to explain why the smallest of details can be so important when conducting research.

This piece by Dvosrsky summarizes a recently published article that points out a (possible!) major flaw in pre-clinical cancer research using rats. Namely, lab rats aren't being kept at an ideal rat temperature. This leads to the rats behaving differently than normal to stay warm: They eat more, they burrow more, and their metabolism changes. The researchers go on to explain that there are also plenty of other seemingly innocuous factors that can vary from rat lab to rat lab, like bedding, food, exposure to light, etc. and that these factors may also effect research findings.


Why is this so important? Psychology isn't the only field dealing with a replicability crisis: Rat researchers are also experiencing difficulties. Difficulties that may be the result of all of these seemingly tiny differences in lab rats that are used during pre-clinical research.

I think this could be useful as it is an example that students can easily grasp. Rat research is used in psychology, but is used here within a medical context, thus reaching students beyond our psychology majors.

Also, it is always a good time to share this story from The Onion about lab rats...

Comments

Popular posts from this blog

Ways to use funny meme scales in your stats classes

Have you ever heard of the theory that there are multiple people worldwide thinking about the same novel thing at the same time? It is the multiple discovery hypothesis of invention . Like, multiple great minds around the world were working on calculus at the same time. Well, I think a bunch of super-duper psychology professors were all thinking about scale memes and pedagogy at the same time. Clearly, this is just as impressive as calculus. Who were some of these great minds? 1) Dr.  Molly Metz maintains a curated list of hilarious "How you doing?" scales.  2) Dr. Esther Lindenström posted about using these scales as student check-ins. 3) I was working on a blog post about using such scales to teach the basics of variables.  So, I decided to create a post about three ways to use these scales in your stats classes:  1) Teaching the basics of variables. 2) Nominal vs. ordinal scales.  3) Daily check-in with your students.  1. Teach your students the basics...

Rouse, Russel, & Campbell (2025) is a curated list of Psi Chi journals that are perfect for Intro Stats.

This summer, the Psi Chi Journal of Psychology Research published  Rouse, Russel, and Campbell's Beyond the textbook: Psi Chi Journal articles in introductory psychology courses. It is a curated list of paywall-free Psi Chi articles, mostly with student co-authors, that are peer-reviewed and of an appropriate writing level and length to use in an Introduction to Psychology course. The authors provide the following information for each of the articles: In addition to being appropriate for Into Psych, these articles are also perfect for Intro Stats. In my classes, I emphasize the ability to read and write simple result sections. One way I would review this skill is by showing my students Results sections from published research and asking them to identify the test statistics, effect size, and other relevant information. This selection of articles features clear and concise results sections for t -tests, ANOVA, factorial ANOVA, regression, and correlation. I created a spreadsheet...

Using pulse rates to determine the scariest of scary movies

  The Science of Scare project, conducted by MoneySuperMarket.com, recorded heart rates in participants watching fifty horror movies to determine the scariest of scary movies. Below is a screenshot of the original variables and data for 12 of the 50 movies provided by MoneySuperMarket.com: https://www.moneysupermarket.com/broadband/features/science-of-scare/ https://www.moneysupermarket.com/broadband/features/science-of-scare/ Here is my version of the data in Excel format . It includes the original data plus four additional columns (so you can run more analyses on the data): -Year of Release -Rotten Tomato rating -Does this movie have a sequel (yes or no)? -Is this movie a sequel (yes or no)? Here are some ways you could use this in class: 1. Correlation : Rotten Tomato rating does not correlate with the overall scare score ( r = 0.13, p = 0.36).   2. Within-subject research design : Baseline, average, and maximum heart rates are reported for each film.   3. ...