Skip to main content

Posts

Aschwanden's "Science is broken, it is just a hell of a lot harder than we give it credit for"

Aschwanden (for fivethirtyeight.com) did an extensive piece that summarizes that data/p-hacking/what's wrong with statistical significance crisis in statistics. There is a focus on the social sciences, including some quotes from Brian Nosek regarding his replication work. The report also draws attention to  Retraction Watch  and Center for Open Science as well as retractions of findings (as an indicator of fraud and data misuse). The article also describes our funny bias of sticking to early, big research findings even after those research findings are disproved (example used here is the breakfast eating:weight loss relationship). The whole article could be used for a statistics or research methods class. I do think that the p-hacking interactive tool found in this report could be especially useful illustration of How to Lie with Statistics. The "Hack your way to scientific glory" interactive piece demonstrates that if you fool around enough with your operationalized...

Correlation example using research study about reusable shopping bags/shopping habits

A few weeks ago, I used an NPR story in order to create an ANOVA example for use in class. This week, I'm giving the same treatment to a different research study discussed on NPR and turning it into a correlation example. A recent research study found that individuals who use reusable grocery store bags tend to spend more on both organic food AND junk food. Here is NPR's treatment of the research .  Here is a more detailed account of the research via an interview with one of the study's authors.   Here is the working paper that the PIs have released for even more detail.  The researchers frame their findings (folks who are "good" by using resuable bags and purchasing organic food then feel entitled to indulge in some chips and cookies) via "licensing", but I think this could also be explained by ego depletion (opening up a discussion about that topic). So, I created a little faux data set that replicates the main finding: Folks who use reusable ...

Mersereau's "Wunderground Uses Fox News Graphing Technique to Boast Forecast Skills"

Mersereau, writing for Gawker website The Vane, provides  another example of How Not To Graph. Or How To Graph As To Not Lie About Data But Make Your Data Look More Impressive Than Is Ethical. Weather Underground (AKA Wunderground, weather forecasting service/website) was bragging about it's accuracy compared to the competition. At first glance (see below), this graph seems to reinforce the argument...until you take a look at the scale being used. The beginning point on the X axis is 70, while the high point is 80. So, really, the differences listed probably don't even approach statistical significance. This story, somewhat randomly, also includes some shady graphs created by Fox News. I don't understand the need for the extra Fox News graphs, but they also illustrate how one can create graphs that have accurate numbers but still manage to twist the truth.

Dayna Evans "Do You Live in a "B@%$#" or a "F*%&" State? American Curses, Mapped"

Warning: This research and story include every paint-peeling obscenity in the book. Caution should be used when opening up these links on your work computer and you should really think long an hard before providing these links to your students. However, the research I'm about to describe 1) illustrates z-scores and 2) investigated regional usage of safe-for-the-classroom words like darn, damn, and gosh. So, a linguist, Dr. Jack Grieve  decided to use Twitter data to map out the use of different obscenities by county of the United States. Gawker picked up on this research and created a story about it . How can this be used in a statistics class? In order to quantify greater or lesser use of different obscenities, he created z-scores by county and illustrated the difference via a color-coding system. The more orange, the higher the z-score for a region (thus, greater usage) while blue indicates lesser usage. And, there are three such maps (damn, darn, and gosh) that are safe for us...

Caitlin Dickerson's "Secret World War II Chemical Experiments Tested Troops By Race"

NPR did a series of stories exposing research that the U.S. government conducted during WWII. This research exposed American soldiers to mustard gas for research purposes. In some instances, the government targeted soldiers of color, believing that they had tougher/different skin that would make them more resistant to this form of chemical warfare. Here is the  whole series of stories  (from the  original research, exposed via Freedom of Information Act , to  NPR working to find the effected veterans ). None of the soldiers ever received any special dispensation or medical care due to their involvement. Participants were not given the choice to discontinue participation without prejudice, as recalled below by one of the surviving veterans: "We weren't told what it was," says Charlie Cavell, who was 19 when he volunteered for the program in exchange for two weeks' vacation. "Until we actually got into the process of being in that room and realized, wait a m...

McFadden's "Frances Oldham Kelsey, F.D.A. Stickler Who Saved U.S. Babies From Thalidomide, Dies at 101"

This obituary for Dr. Frances Oldham Kelsey that tells an important story about research ethics, pharmaceutical industries, and the importance of government oversight in the drug creation process ( .pdf here ). Dr. Kelsey, receiving the President's Award for Distinguished Federal Civilian Service (highest honor given to federal employees) Dr.  Kelsey was one of the first officials in the United States to notice (via data!) and raise concerns about thalidomide , the now infamous anti-nausea drug that causes terrible birth defects when administered to pregnant women. The drug was already being widely used throughout Europe, Canada, and the Middle East to treat morning sickness, but Dr. Kelsey refused to approve the drug for widespread use in the US (despite persistent efforts of Big Pharm to push the drug into the US market). Time proved Dr. Oldham Kelsey correct (clinical trials in the US went very poorly), and her persistence, data analysis, and ethics helped to limit the ...

ANOVA example using Patty Neighmond's "To ease pain, reach for your play list."

I often share news stories that illustrate easy-to-follow, engaging research that appeals to undergraduates. For the first time, I'm also providing a mini data set that 1) mimics the original findings and 2) provides an example of ANOVA. This story by Patty Neighmond , reporting for NPR, describes a  study  investigating the role of music in pain reduction. The study used three groups of kids, all recovering from surgery. The kids either 1) listened to music, 2) listened to an audio books, or 3) sat with noise-cancelling ear phones for 30 minutes. The researchers found that kids in both the music and audio book experienced pain reduction levels comparable to over-the-counter pain medication while the control group enjoyed no such benefits. And the research used the 10-point FACES scale, allowing for a side discussion about how we collect data from humans who don't have the best vocabularies or limited communication skills. This study can also be used as a way t...