Skip to main content

ANOVA example using Patty Neighmond's "To ease pain, reach for your play list."

I often share news stories that illustrate easy-to-follow, engaging research that appeals to undergraduates. For the first time, I'm also providing a mini data set that 1) mimics the original findings and 2) provides an example of ANOVA.

This story by Patty Neighmond, reporting for NPR, describes a study investigating the role of music in pain reduction. The study used three groups of kids, all recovering from surgery. The kids either 1) listened to music, 2) listened to an audio books, or 3) sat with noise-cancelling ear phones for 30 minutes. The researchers found that kids in both the music and audio book experienced pain reduction levels comparable to over-the-counter pain medication while the control group enjoyed no such benefits.

And the research used the 10-point FACES scale, allowing for a side discussion about how we collect data from humans who don't have the best vocabularies or limited communication skills.


This study can also be used as a way to explain ANOVA. The researchers didn't use ANOVA (and the data I provide below IS NOT the original data), but the original design and findings do provide us with three levels of a factor as well as some significant post-hocs.

Here is a data set generated via Richard Landers' data set generator and modified as to use a 1-10 FACES scale used in the original research (yes, the n-size is small for this design). It approximates the original findings: Statistically significant ANOVA, with post-hocs that demonstrate that Audio Book and Music conditions do not differ significantly but that participants in theses two groups report significantly less pain that the control condition.


Audio Book
Music Control
5 5 4
6 4 8
7 4 7
2 7 6
6 6 10
3 4 6
4 6 10
8 4 8
5 3 5
4 5 6

Now, if you have the students listen to the news story first, they are going to know the results. I don't think this is a bad thing, necessarily. I think this could be used when first introducing students to ANOVA as an example with training wheels (interesting news story to listen to for four minutes followed by a statistical exercise for which they know the outcomes). Additionally, I teach statistics to a lot of non-psychology majors (nursing, pre-physical therapy, pre-physician assistant) so a medical example helps me reach those students.

This could also be used as a prompt a discussion about turning this study into a more complicated one-way ANOVA (include more levels of your factor, like 30 minutes of video games or TV) as well as how you could turn the original study into a factorial ANOVA (by including severity of surgery, length of hospital stay, age of child, etc.). 

Comments

Popular posts from this blog

Ways to use funny meme scales in your stats classes

Have you ever heard of the theory that there are multiple people worldwide thinking about the same novel thing at the same time? It is the multiple discovery hypothesis of invention . Like, multiple great minds around the world were working on calculus at the same time. Well, I think a bunch of super-duper psychology professors were all thinking about scale memes and pedagogy at the same time. Clearly, this is just as impressive as calculus. Who were some of these great minds? 1) Dr.  Molly Metz maintains a curated list of hilarious "How you doing?" scales.  2) Dr. Esther Lindenström posted about using these scales as student check-ins. 3) I was working on a blog post about using such scales to teach the basics of variables.  So, I decided to create a post about three ways to use these scales in your stats classes:  1) Teaching the basics of variables. 2) Nominal vs. ordinal scales.  3) Daily check-in with your students.  1. Teach your students the basics...

Using pulse rates to determine the scariest of scary movies

  The Science of Scare project, conducted by MoneySuperMarket.com, recorded heart rates in participants watching fifty horror movies to determine the scariest of scary movies. Below is a screenshot of the original variables and data for 12 of the 50 movies provided by MoneySuperMarket.com: https://www.moneysupermarket.com/broadband/features/science-of-scare/ https://www.moneysupermarket.com/broadband/features/science-of-scare/ Here is my version of the data in Excel format . It includes the original data plus four additional columns (so you can run more analyses on the data): -Year of Release -Rotten Tomato rating -Does this movie have a sequel (yes or no)? -Is this movie a sequel (yes or no)? Here are some ways you could use this in class: 1. Correlation : Rotten Tomato rating does not correlate with the overall scare score ( r = 0.13, p = 0.36).   2. Within-subject research design : Baseline, average, and maximum heart rates are reported for each film.   3. ...

If your students get the joke, they get statistics.

Gleaned from multiple sources (FB, Pinterest, Twitter, none of these belong to me, etc.). Remember, if your students can explain why a stats funny is funny, they are demonstrating statistical knowledge. I like to ask students to explain the humor in such examples for extra credit points (see below for an example from my FA14 final exam). Using xkcd.com for bonus points/assessing if students understand that correlation =/= causation What are the numerical thresholds for probability?  How does this refer to alpha? What type of error is being described, Type I or Type II? What measure of central tendency is being described? Dilbert: http://search.dilbert.com/comic/Kill%20Anyone Sampling, CLT http://foulmouthedbaker.com/2013/10/03/graphs-belong-on-cakes/ Because control vs. sample, standard deviations, normal curves. Also,"skewed" pun. If you go to the original website , the story behind this cakes has to do w...