Skip to main content

Amanda Aronczyk's "Cancer Patients And Doctors Struggle To Predict Survival"

Warning: This isn't an easy story to listen to, as it is about life expectancy and terminal cancer (and how doctors can best convey such information to their patients). Most of this news story is dedicated to training doctors on the best way to deliver this awful news.



 But Aronczyk, reporting for NPR, does tell a story that provides a good example of high-stakes applied statistics. Specifically, when explaining life expectancy to patients with terminal cancer, which measure of central tendency should be used? See the quote from the story below to understand where confusion and misunderstanding can come from measures of central tendency.

"The data are typically given as a median, which is different from an average. A median is the middle of a range. So if a patient is told she has a year median survival, it means that half of similar patients will be alive at the end of a year and half will have died. It's possible that the person's cancer will advance quickly and she will live less than the median. Or, if she is in good health and has access to the latest in treatments, she might outlive the median, sometimes by many years.
Doctors think of the number as a median, but patients usually understand it as an absolute number, according to Dr. Tomer Levin, a psychiatrist who works with cancer patients and doctors at Memorial Sloan Kettering Cancer Center in New York. He thinks there is a breakdown in communication between the doctor and patient when it comes to the prognostic discussion."

A couple of ways this could be used as a discussion starter:

1) How could a doctor best describe life expediencies? What may be more useful? Interquartile range? A mean and standard deviation? Range? What is the simplest way to explain these measures to a person receiving horrible news?

2) This could also be useful in a cognitive/memory class, as the story refers to research that has found that cancer patients retain little of the information they receive when they get their diagnosis. How can statistical information be conveyed in an understandable manner to individuals who are experience enormous stress?

Comments

Popular posts from this blog

Ways to use funny meme scales in your stats classes

Have you ever heard of the theory that there are multiple people worldwide thinking about the same novel thing at the same time? It is the multiple discovery hypothesis of invention . Like, multiple great minds around the world were working on calculus at the same time. Well, I think a bunch of super-duper psychology professors were all thinking about scale memes and pedagogy at the same time. Clearly, this is just as impressive as calculus. Who were some of these great minds? 1) Dr.  Molly Metz maintains a curated list of hilarious "How you doing?" scales.  2) Dr. Esther Lindenström posted about using these scales as student check-ins. 3) I was working on a blog post about using such scales to teach the basics of variables.  So, I decided to create a post about three ways to use these scales in your stats classes:  1) Teaching the basics of variables. 2) Nominal vs. ordinal scales.  3) Daily check-in with your students.  1. Teach your students the basics...

Leo DiCaprio Romantic Age Gap Data: UPDATE

Does anyone else teach correlation and regression together at the end of the semester? Here is a treat for you: Updated data on Leonardo DiCaprio, his age, and his romantic partner's age when they started dating. A few years ago, there was a dust-up when a clever Redditor r/TrustLittleBrother realized that DiCaprio had never dated anyone over 25. I blogged about this when it happened. But the old data was from 2022. Inspired by this sleuthing,  I created a wee data set, including up-to-date information on his current relationship with Vittoria Ceretti, so your students can suss out the patterns that exist in this data.

If your students get the joke, they get statistics.

Gleaned from multiple sources (FB, Pinterest, Twitter, none of these belong to me, etc.). Remember, if your students can explain why a stats funny is funny, they are demonstrating statistical knowledge. I like to ask students to explain the humor in such examples for extra credit points (see below for an example from my FA14 final exam). Using xkcd.com for bonus points/assessing if students understand that correlation =/= causation What are the numerical thresholds for probability?  How does this refer to alpha? What type of error is being described, Type I or Type II? What measure of central tendency is being described? Dilbert: http://search.dilbert.com/comic/Kill%20Anyone Sampling, CLT http://foulmouthedbaker.com/2013/10/03/graphs-belong-on-cakes/ Because control vs. sample, standard deviations, normal curves. Also,"skewed" pun. If you go to the original website , the story behind this cakes has to do w...