Skip to main content

Randy McCarthy's "Research Minutia"

This blog posting by Dr. Randy McCarthy discusses best practices in organizing/naming conventions for data files. These suggestions are probably more applicable to teaching graduate students than undergraduates. They are also the sorts of tips and tricks we use in practice but rarely teach in the classroom (but maybe we should).

Included in Randy's recommendations:

1) Maintain consistent naming conventions for frequently used variables (like scale items or compiled scales that you use over and over again in your research). Then create and run the same syntax for this data for the rest of your scholarly career. If you are very, very consistent in the scales you use and the data analyses your run, you can save yourself time by showing a little forethought.

2) Keep and guard a raw version of all data sets.

3) Annotate your syntax. I would change that to HEAVILY annotate your syntax. I even put the dates upon which I write code so I can follow my own logic if I have to let a data set go for a few weeks/months.

My only additions to the list would be a trick I learned in graduate school: Every time I compile a scale, I name it @scalename. The @ sign sticks out among variable names and reminds me that this is a compiled scale (and potentially flawed). And every time I compile a scale in SPSS, I definitely do so using syntax and I save my work (just to ensure that I have a record of what I did).

Also, have a mindful back up system for data sets. I use and love Dropbox. I also like Google drive but I am use Dropbox they way most people use My Computer on their hard drives, so it is easier for me to use.

Doe anyone else have any similar tips? Feel free to comment or email me (hartnett004@gannon.edu) if you have any ideas and I'll include them in this post.

Comments

Popular posts from this blog

Ways to use funny meme scales in your stats classes

Have you ever heard of the theory that there are multiple people worldwide thinking about the same novel thing at the same time? It is the multiple discovery hypothesis of invention . Like, multiple great minds around the world were working on calculus at the same time. Well, I think a bunch of super-duper psychology professors were all thinking about scale memes and pedagogy at the same time. Clearly, this is just as impressive as calculus. Who were some of these great minds? 1) Dr.  Molly Metz maintains a curated list of hilarious "How you doing?" scales.  2) Dr. Esther Lindenström posted about using these scales as student check-ins. 3) I was working on a blog post about using such scales to teach the basics of variables.  So, I decided to create a post about three ways to use these scales in your stats classes:  1) Teaching the basics of variables. 2) Nominal vs. ordinal scales.  3) Daily check-in with your students.  1. Teach your students the basics...

Leo DiCaprio Romantic Age Gap Data: UPDATE

Does anyone else teach correlation and regression together at the end of the semester? Here is a treat for you: Updated data on Leonardo DiCaprio, his age, and his romantic partner's age when they started dating. A few years ago, there was a dust-up when a clever Redditor r/TrustLittleBrother realized that DiCaprio had never dated anyone over 25. I blogged about this when it happened. But the old data was from 2022. Inspired by this sleuthing,  I created a wee data set, including up-to-date information on his current relationship with Vittoria Ceretti, so your students can suss out the patterns that exist in this data.

If your students get the joke, they get statistics.

Gleaned from multiple sources (FB, Pinterest, Twitter, none of these belong to me, etc.). Remember, if your students can explain why a stats funny is funny, they are demonstrating statistical knowledge. I like to ask students to explain the humor in such examples for extra credit points (see below for an example from my FA14 final exam). Using xkcd.com for bonus points/assessing if students understand that correlation =/= causation What are the numerical thresholds for probability?  How does this refer to alpha? What type of error is being described, Type I or Type II? What measure of central tendency is being described? Dilbert: http://search.dilbert.com/comic/Kill%20Anyone Sampling, CLT http://foulmouthedbaker.com/2013/10/03/graphs-belong-on-cakes/ Because control vs. sample, standard deviations, normal curves. Also,"skewed" pun. If you go to the original website , the story behind this cakes has to do w...