Skip to main content

Smith's "Rutgers survey underscores challenges collecting sexual assault data."

Tovia Smith filed a report with NPR that detailed the psychometric delicacies of trying to measure the sexual assault rates on a college campus. I think this story is highly relevant to college students. I also think it also provides an example of the challenge of operationalizing variables as well as self-selection bias.

This story describes sexual assault data collected at two different universities, Rutgers and U. Kentucky. The universities used different surveys, had very different participation rates, and had very different findings (20% of Rutgers students met the criteria for sexual assault, while only 5% of Kentucky students did).

Why the big differences?

1) At Rutgers, students where paid for their participation and 30% of all students completed the survey. At U. Kentucky, student participation was mandatory and no compensation was given. Sampling techniques were very different, which opens the floor to student discussion about what this might mean for the results. Who might be drawn to complete a sexual assault survey? Who is enticed by completing a survey for compensation? How might mandatory survey completion effect college students' attitudes towards a survey and their likelihood to take the survey seriously? Is it ethical to make a survey about something as private as sexual assault mandatory? Is it ethical to make any survey mandatory?

2) Rutgers used a broader definition of sexual assault. For instance, one criteria for sexual assault was having a romantic partner threaten to break up with you if you didn't have sex with them. Jerk move? Absolutely. But does should this boorish behavior be lumped into the same category as rape? Again, this bring up room for class discussion about how such definitions may have influenced the research findings. How can we objectively, sensitively define sexual assault?


Here is an additional news story on the survey out of University of Kentucky. Here is more information about Rutgers' survey (you can take a look at the actual survey on p. 44 of this document).

Comments

Popular posts from this blog

Ways to use funny meme scales in your stats classes

Have you ever heard of the theory that there are multiple people worldwide thinking about the same novel thing at the same time? It is the multiple discovery hypothesis of invention . Like, multiple great minds around the world were working on calculus at the same time. Well, I think a bunch of super-duper psychology professors were all thinking about scale memes and pedagogy at the same time. Clearly, this is just as impressive as calculus. Who were some of these great minds? 1) Dr.  Molly Metz maintains a curated list of hilarious "How you doing?" scales.  2) Dr. Esther Lindenström posted about using these scales as student check-ins. 3) I was working on a blog post about using such scales to teach the basics of variables.  So, I decided to create a post about three ways to use these scales in your stats classes:  1) Teaching the basics of variables. 2) Nominal vs. ordinal scales.  3) Daily check-in with your students.  1. Teach your students the basics...

Leo DiCaprio Romantic Age Gap Data: UPDATE

Does anyone else teach correlation and regression together at the end of the semester? Here is a treat for you: Updated data on Leonardo DiCaprio, his age, and his romantic partner's age when they started dating. A few years ago, there was a dust-up when a clever Redditor r/TrustLittleBrother realized that DiCaprio had never dated anyone over 25. I blogged about this when it happened. But the old data was from 2022. Inspired by this sleuthing,  I created a wee data set, including up-to-date information on his current relationship with Vittoria Ceretti, so your students can suss out the patterns that exist in this data.

If your students get the joke, they get statistics.

Gleaned from multiple sources (FB, Pinterest, Twitter, none of these belong to me, etc.). Remember, if your students can explain why a stats funny is funny, they are demonstrating statistical knowledge. I like to ask students to explain the humor in such examples for extra credit points (see below for an example from my FA14 final exam). Using xkcd.com for bonus points/assessing if students understand that correlation =/= causation What are the numerical thresholds for probability?  How does this refer to alpha? What type of error is being described, Type I or Type II? What measure of central tendency is being described? Dilbert: http://search.dilbert.com/comic/Kill%20Anyone Sampling, CLT http://foulmouthedbaker.com/2013/10/03/graphs-belong-on-cakes/ Because control vs. sample, standard deviations, normal curves. Also,"skewed" pun. If you go to the original website , the story behind this cakes has to do w...