Skip to main content

Explaining between and within group differences using Pew Research data on religion/climate change

I am a big fan of Pew Research Center. They collect, share, and summarize data about a wide variety of topics. In addition to providing very accessible summaries of their findings, they also provide more in-depth information about their data collection techniques, including original materials used in their data collection and very through explanations of their methods.

One topic they collect Pew studies is religion and attitudes (religious and secular) held by people of different religions. And it got me thinking that I could use their data in order to explain within and between group differences at the heart of a conceptual understanding of ANOVA.

Specifically, Pew gathered data looking at between-group differences in beliefs in global climate change by religion...

Chart created by Pew Research

...and belief in climate change within just Catholics, divided up by political affiliation.


Chart created by Pew Research



The questionnaires differed slightly for the two surveys. However, both groups were asked whether or not global warming was caused by human activity. The data table illustrates the between group differences between religions and their views on climate change while the bar graphs demonstrate how within one group (Catholics) there is a fair amount of variability in beliefs about climate change, based upon political affiliation.

How to use in class? Well, the Catholics, as a group, report a 45% agreement with the idea that climate change is caused by human activity. Which is pretty different than White Evangelicals, who report a 28% agreement with this statement. So that would be significantly different, right? But wait...62% of Catholic Democrats agree that global climate change is caused by human activity, while only 24% of Catholic Republicans agree with this statement. That is an awful lot of within group variance.

More data on more religion is available from Pew.

Comments

Popular posts from this blog

Ways to use funny meme scales in your stats classes

Have you ever heard of the theory that there are multiple people worldwide thinking about the same novel thing at the same time? It is the multiple discovery hypothesis of invention . Like, multiple great minds around the world were working on calculus at the same time. Well, I think a bunch of super-duper psychology professors were all thinking about scale memes and pedagogy at the same time. Clearly, this is just as impressive as calculus. Who were some of these great minds? 1) Dr.  Molly Metz maintains a curated list of hilarious "How you doing?" scales.  2) Dr. Esther Lindenström posted about using these scales as student check-ins. 3) I was working on a blog post about using such scales to teach the basics of variables.  So, I decided to create a post about three ways to use these scales in your stats classes:  1) Teaching the basics of variables. 2) Nominal vs. ordinal scales.  3) Daily check-in with your students.  1. Teach your students the basics...

Using pulse rates to determine the scariest of scary movies

  The Science of Scare project, conducted by MoneySuperMarket.com, recorded heart rates in participants watching fifty horror movies to determine the scariest of scary movies. Below is a screenshot of the original variables and data for 12 of the 50 movies provided by MoneySuperMarket.com: https://www.moneysupermarket.com/broadband/features/science-of-scare/ https://www.moneysupermarket.com/broadband/features/science-of-scare/ Here is my version of the data in Excel format . It includes the original data plus four additional columns (so you can run more analyses on the data): -Year of Release -Rotten Tomato rating -Does this movie have a sequel (yes or no)? -Is this movie a sequel (yes or no)? Here are some ways you could use this in class: 1. Correlation : Rotten Tomato rating does not correlate with the overall scare score ( r = 0.13, p = 0.36).   2. Within-subject research design : Baseline, average, and maximum heart rates are reported for each film.   3. ...

Rouse, Russel, & Campbell (2025) is a curated list of Psi Chi journals that are perfect for Intro Stats.

This summer, the Psi Chi Journal of Psychology Research published  Rouse, Russel, and Campbell's Beyond the textbook: Psi Chi Journal articles in introductory psychology courses. It is a curated list of paywall-free Psi Chi articles, mostly with student co-authors, that are peer-reviewed and of an appropriate writing level and length to use in an Introduction to Psychology course. The authors provide the following information for each of the articles: In addition to being appropriate for Into Psych, these articles are also perfect for Intro Stats. In my classes, I emphasize the ability to read and write simple result sections. One way I would review this skill is by showing my students Results sections from published research and asking them to identify the test statistics, effect size, and other relevant information. This selection of articles features clear and concise results sections for t -tests, ANOVA, factorial ANOVA, regression, and correlation. I created a spreadsheet...