Skip to main content

Quealy & Sanger-Katz's "Is Sushi ‘Healthy’? What About Granola? Where Americans and Nutritionists Disagree"

UPDATE, 9/22/22: Here is a non-paywalled link to this information:  https://www.nytimes.com/2017/10/09/learning/whats-going-on-in-this-graph-oct-10-2017.html


This article from the NYT is based on a survey. That survey asked a bunch of nutritionists if they considered certain foods healthy. Then they asked a bunch of everyday folks if they considered the same foods to be healthy.

Then they generated the percentage of each group that considered the food healthy. And the NYT put the nutritionist responses on a Y-axis, and commoners on the X, and made a lovely scatterplot...

Nutritionists and non-nutritionists agree that chocolate chip cookies are not healthy. However, nutritionists are far more critical of American cheese than are non-nutritionists. 


...and provided us with the raw data as well.








The article mostly highlights the foods where there is a large discrepancy of opinion between the two groups (see above).

There are many teachable moments in this article:

-Correlation. Obvs.
-Inter-rater reliability. Kind of. It is high when nutritionists and non-nutritionists agree, and low when they don't. When there is low reliability, the food becomes an outlier (so talk about outliers/influential observations).
-Lots of descriptive data is presented.
-If you wanted, you could conduct a paired t-test on this data. Compare nutritionist data to layperson data. This data is available in separate tables accompanying the story.
-While you are at it, run the correlation and generate the regression line.
-Discuss real-life application of this data. What are the commonalities for food that laypeople ID as unhealthy that actually are healthy? And vice-versa? How can the government concentrate on suggesting healthy, confusing food to laypeople?

Comments

Popular posts from this blog

Ways to use funny meme scales in your stats classes

Have you ever heard of the theory that there are multiple people worldwide thinking about the same novel thing at the same time? It is the multiple discovery hypothesis of invention . Like, multiple great minds around the world were working on calculus at the same time. Well, I think a bunch of super-duper psychology professors were all thinking about scale memes and pedagogy at the same time. Clearly, this is just as impressive as calculus. Who were some of these great minds? 1) Dr.  Molly Metz maintains a curated list of hilarious "How you doing?" scales.  2) Dr. Esther Lindenström posted about using these scales as student check-ins. 3) I was working on a blog post about using such scales to teach the basics of variables.  So, I decided to create a post about three ways to use these scales in your stats classes:  1) Teaching the basics of variables. 2) Nominal vs. ordinal scales.  3) Daily check-in with your students.  1. Teach your students the basics...

Rouse, Russel, & Campbell (2025) is a curated list of Psi Chi journals that are perfect for Intro Stats.

This summer, the Psi Chi Journal of Psychology Research published  Rouse, Russel, and Campbell's Beyond the textbook: Psi Chi Journal articles in introductory psychology courses. It is a curated list of paywall-free Psi Chi articles, mostly with student co-authors, that are peer-reviewed and of an appropriate writing level and length to use in an Introduction to Psychology course. The authors provide the following information for each of the articles: In addition to being appropriate for Into Psych, these articles are also perfect for Intro Stats. In my classes, I emphasize the ability to read and write simple result sections. One way I would review this skill is by showing my students Results sections from published research and asking them to identify the test statistics, effect size, and other relevant information. This selection of articles features clear and concise results sections for t -tests, ANOVA, factorial ANOVA, regression, and correlation. I created a spreadsheet...

Using pulse rates to determine the scariest of scary movies

  The Science of Scare project, conducted by MoneySuperMarket.com, recorded heart rates in participants watching fifty horror movies to determine the scariest of scary movies. Below is a screenshot of the original variables and data for 12 of the 50 movies provided by MoneySuperMarket.com: https://www.moneysupermarket.com/broadband/features/science-of-scare/ https://www.moneysupermarket.com/broadband/features/science-of-scare/ Here is my version of the data in Excel format . It includes the original data plus four additional columns (so you can run more analyses on the data): -Year of Release -Rotten Tomato rating -Does this movie have a sequel (yes or no)? -Is this movie a sequel (yes or no)? Here are some ways you could use this in class: 1. Correlation : Rotten Tomato rating does not correlate with the overall scare score ( r = 0.13, p = 0.36).   2. Within-subject research design : Baseline, average, and maximum heart rates are reported for each film.   3. ...