Skip to main content

Diversity in Tech by DataIsBeautiful

I am a fan of explaining the heart of a statistical analysis conceptually with words and examples, not with math. Information Is Beautiful has a gorgeous new interactive, Diversity in Tech, that uses data visualization to present gender and ethnic representation among employees at various big-name internet firms.

I think this example explains why we might use Chi-Square Goodness of Fit. I think it could also be used in an I-O class.

So, what this interactive gives you is a list of the main, big online firms. And then the proportions of different sort of people who fall into each category. See below:



When I look at that US Population baseline information, I see a bunch of expected data. And then when I see the data for different firms, I see Observed data. So, I see a bunch of conceptual examples for chi-square Goodness of Fit.

For example, look at gender. 51% of the population is female. That is you Expected data. Compare that to data for Indiegogo. They have 50% female employees. That is your Observed data. Eyeballing it, you can guess that wouldn't be a significant chi-square. The two distributions are very similar. Again, this is a CONCEPTUAL introduction to what chi-square looks at, not a computation one.





Another important conceptual piece to chi-square is the fact that you need your O and E values to be pretty far apart in order to get a big test statistic. So, you also ask your students to compare: Which do you think would have a larger chi-square test statistic for Latino Employees: Amazon or Ebay? The Expected value is 18%. Since Amazon's 13% is closer to the Expected value of 18% than Ebay's 4%, we would expect Amazon to have a smaller X2 value than Ebay.


I bet you could also use this data while teaching I-O. One way to demonstrate fair hiring practices is to demonstrate that your workforce mimics the ethnic breakdown of America, or your state, or your region. As such, you could ask your students to pretend to be consultants and make recommendations for which firms have the biggest disparities, using this data as evidence.

Comments

Popular posts from this blog

Ways to use funny meme scales in your stats classes

Have you ever heard of the theory that there are multiple people worldwide thinking about the same novel thing at the same time? It is the multiple discovery hypothesis of invention . Like, multiple great minds around the world were working on calculus at the same time. Well, I think a bunch of super-duper psychology professors were all thinking about scale memes and pedagogy at the same time. Clearly, this is just as impressive as calculus. Who were some of these great minds? 1) Dr.  Molly Metz maintains a curated list of hilarious "How you doing?" scales.  2) Dr. Esther Lindenström posted about using these scales as student check-ins. 3) I was working on a blog post about using such scales to teach the basics of variables.  So, I decided to create a post about three ways to use these scales in your stats classes:  1) Teaching the basics of variables. 2) Nominal vs. ordinal scales.  3) Daily check-in with your students.  1. Teach your students the basics...

Leo DiCaprio Romantic Age Gap Data: UPDATE

Does anyone else teach correlation and regression together at the end of the semester? Here is a treat for you: Updated data on Leonardo DiCaprio, his age, and his romantic partner's age when they started dating. A few years ago, there was a dust-up when a clever Redditor r/TrustLittleBrother realized that DiCaprio had never dated anyone over 25. I blogged about this when it happened. But the old data was from 2022. Inspired by this sleuthing,  I created a wee data set, including up-to-date information on his current relationship with Vittoria Ceretti, so your students can suss out the patterns that exist in this data.

If your students get the joke, they get statistics.

Gleaned from multiple sources (FB, Pinterest, Twitter, none of these belong to me, etc.). Remember, if your students can explain why a stats funny is funny, they are demonstrating statistical knowledge. I like to ask students to explain the humor in such examples for extra credit points (see below for an example from my FA14 final exam). Using xkcd.com for bonus points/assessing if students understand that correlation =/= causation What are the numerical thresholds for probability?  How does this refer to alpha? What type of error is being described, Type I or Type II? What measure of central tendency is being described? Dilbert: http://search.dilbert.com/comic/Kill%20Anyone Sampling, CLT http://foulmouthedbaker.com/2013/10/03/graphs-belong-on-cakes/ Because control vs. sample, standard deviations, normal curves. Also,"skewed" pun. If you go to the original website , the story behind this cakes has to do w...