Skip to main content

Planet Money's The Modal American

While teaching measures of central tendency in Intro stats, I have shrugged and said: "Yeah, mean and average are the same thing, I don't know why there are two words. Statisticians say mean so we'll say mean in this class." I now have a better explanation than that non-explanation, as verbalized by this podcast: The average is thrown around colloquially and can refer to mode, while mean can always be defined with a formula.

This is a fun podcast that describes mode vs. mean, but it also describes the research the rabbit hole we sometimes go down when a seemingly straightforward question becomes downright intractable. Here, the question is: What is the modal American? The Planet Money Team, with the help of FiveThirtyEight's Ben Castlemen, eventually had to go non-parametric and divide people into broad categories and figure out which category had the biggest N. Here is the description of how they divided up :


And, like, they had SO MANY CELLS in their design. JUST SO MANY. For each response option, there were categorical responses:


How to use in class:

1. Podcasts - I know some of you use these in class, here is one for stats.
2. Categorical vs. continuous variables and when and why you would use them. Here, a continuous variable, income, was divided into categorical brackets because they were looking at the data in a non-parametric manner.


3. Which THEN allows you to discuss non-parametric tests, like this one. They weren't exactly doing a chi-square, right? But they were thinking like a chi-square. They just wanted to figure out which of their buckets contained the most Americans...however, they used non-parametric logic. And that logic for non-parametric, where you have groups, and not the general linear model, working in the background, IS challenging for a novice to understand.


Special thanks to Michael Proulx (@MicahelProulx) for recommending this episode.

Comments

Popular posts from this blog

Ways to use funny meme scales in your stats classes

Have you ever heard of the theory that there are multiple people worldwide thinking about the same novel thing at the same time? It is the multiple discovery hypothesis of invention . Like, multiple great minds around the world were working on calculus at the same time. Well, I think a bunch of super-duper psychology professors were all thinking about scale memes and pedagogy at the same time. Clearly, this is just as impressive as calculus. Who were some of these great minds? 1) Dr.  Molly Metz maintains a curated list of hilarious "How you doing?" scales.  2) Dr. Esther Lindenström posted about using these scales as student check-ins. 3) I was working on a blog post about using such scales to teach the basics of variables.  So, I decided to create a post about three ways to use these scales in your stats classes:  1) Teaching the basics of variables. 2) Nominal vs. ordinal scales.  3) Daily check-in with your students.  1. Teach your students the basics...

Leo DiCaprio Romantic Age Gap Data: UPDATE

Does anyone else teach correlation and regression together at the end of the semester? Here is a treat for you: Updated data on Leonardo DiCaprio, his age, and his romantic partner's age when they started dating. A few years ago, there was a dust-up when a clever Redditor r/TrustLittleBrother realized that DiCaprio had never dated anyone over 25. I blogged about this when it happened. But the old data was from 2022. Inspired by this sleuthing,  I created a wee data set, including up-to-date information on his current relationship with Vittoria Ceretti, so your students can suss out the patterns that exist in this data.

If your students get the joke, they get statistics.

Gleaned from multiple sources (FB, Pinterest, Twitter, none of these belong to me, etc.). Remember, if your students can explain why a stats funny is funny, they are demonstrating statistical knowledge. I like to ask students to explain the humor in such examples for extra credit points (see below for an example from my FA14 final exam). Using xkcd.com for bonus points/assessing if students understand that correlation =/= causation What are the numerical thresholds for probability?  How does this refer to alpha? What type of error is being described, Type I or Type II? What measure of central tendency is being described? Dilbert: http://search.dilbert.com/comic/Kill%20Anyone Sampling, CLT http://foulmouthedbaker.com/2013/10/03/graphs-belong-on-cakes/ Because control vs. sample, standard deviations, normal curves. Also,"skewed" pun. If you go to the original website , the story behind this cakes has to do w...